Документ подписан простой электронной подписью Информация о владельце:

ФИО: Загвоздина Любовь Генр Министерство образования и науки Челябинской области Должность: Директор

Дата подписания профессионального образования

«Челябинский колледж Комитент» Уникальный программный ключ:

8ea9eca0be4f6fdd53da06ef676b3f826e1460eb (АНОПО «Челябинский колледж Комитент»)

## ФОНД ОЦЕНОЧНЫХ СРЕДСТВ для проведения текущего контроля и промежуточной АТТЕСТАЦИИ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ ЕН.01 ЭЛЕМЕНТЫ ВЫСШЕЙ МАТЕМАТИКИ

Специальность: 09.02.03 Программирование в компьютерных системах

Квалификация выпускника: Техник - программист

# СОДЕРЖАНИЕ

| 1. I | Іаспорт фонда оценочных средств             | 3 |
|------|---------------------------------------------|---|
| 1.1. | Область применения                          | 3 |
| 1.2. | Планируемые результаты освоения компетенций | 4 |
| 1.3. | Показатели оценки результатов обучения      | 6 |
| 2.   | Задания для контроля и оценки результатов   | 6 |
| 3.   | Критерии оценивания                         | 8 |

## 1. Паспорт фонда оценочных средств

## 1.1. Область применения

Фонд оценочных средств для проведения текущего контроля и промежуточной аттестации обучающихся (далее — Фонд оценочных средств) предназначен для проверки результатов освоения дисциплины ЕН.01 Элементы высшей математики основной профессиональной образовательной программы среднего профессионального образования (далее — образовательной программы) по специальности 09.02.03 Программирование в компьютерных системах.

Дисциплина EH.01 Элементы высшей математики изучается в течение двух семестра. Форма аттестации по семестрам.

| Семестр   | Форма аттестации         |
|-----------|--------------------------|
| третий    |                          |
| четвертый | Дифференцированный зачет |

В результате освоения дисциплины ЕН.01 Элементы высшей математики обучающийся должен

#### уметь:

- использовать математические методы при решении прикладных (профессиональных) задач;
- анализировать результаты измерения величин с допустимой погрешностью, представлять их графически;
- выполнять приближенные вычисления;
- проводить элементарную статистическую обработку информации и результатов исследований;
- *-* знать:
- понятие множества, отношения между множествами, операции над ними;
- способы обоснования истинности высказываний;
- понятие положительной скалярной величины, процесс ее измерения;
- стандартные единицы величин и соотношения между ними;
- правила приближенных вычислений;
- методы математической статистики;

## Перечень формируемых компетенций

Общие компетенции (ОК):

- ОК 1. Понимать сущность и социальную значимость своей будущей профессии, проявлять к ней устойчивый интерес.
- ОК 2. Организовывать собственную деятельность, выбирать типовые методы и способы выполнения профессиональных задач, оценивать их эффективность и качество.
- ОК 3. Принимать решения в стандартных и нестандартных ситуациях и нести за них ответственность.
- ОК 4. Осуществлять поиск и использование информации, необходимой для эффективного выполнения профессиональных задач, профессионального и личностного развития.
- ОК 5. Использовать информационно- коммуникационные технологии в профессиональной деятельности.
- ОК 6. Работать в коллективе и команде, эффективно общаться с коллегами, руководством, потребителями.
- ОК 7. Брать на себя ответственность за работу членов команды (подчиненных), результат выполнения заланий.
- ОК 8. Самостоятельно определять задачи профессионального и личностного развития, заниматься самообразованием, осознанно планировать повышение квалификации.

ОК 9. Ориентироваться в условиях частой смены технологий в профессиональной деятельности.

1.2. Показатели оценки результатов обучения

|                                          | Результаты              |               | Наименование                        |  |  |  |  |
|------------------------------------------|-------------------------|---------------|-------------------------------------|--|--|--|--|
| Содержание дисциплины                    | обучения                | Вид контроля  | оценочного<br>средства/форма        |  |  |  |  |
|                                          | (ОК, ПК)                |               | контроля                            |  |  |  |  |
| 3 семестр                                |                         |               |                                     |  |  |  |  |
| Тема 1.1.                                | ОК 01ОК 09              | Текущий       | Проверка и оценивание               |  |  |  |  |
| Матрицы и определители                   |                         |               | решения задач                       |  |  |  |  |
| Тема 1. 2.                               | OK 01OK 09              | Текущий       | Проверка и оценивание               |  |  |  |  |
| Системы линейных уравнений               |                         |               | решения задач                       |  |  |  |  |
| Тема 2.1.                                | ОК 01ОК 09              | Текущий       | Проверка и оценивание               |  |  |  |  |
| Векторы. Операции над                    |                         |               | решения задач                       |  |  |  |  |
| векторами.                               | OM 01 OM 00             |               |                                     |  |  |  |  |
| Тема 2.2.                                | OK 01OK 09              | Текущий       | Проверка и оценивание               |  |  |  |  |
| Прямая на плоскости                      | OK 01 OK 00             | T. V          | решения задач                       |  |  |  |  |
| Тема 2.3.                                | OK 01OK 09              | Текущий       | Проверка и оценивание               |  |  |  |  |
| Кривые второго порядка                   | 4                       |               | решения задач                       |  |  |  |  |
| Тема 3.1.                                | 4 семестр<br>ОК 01ОК 09 | о<br>Текущий  | Проверка и ополивания               |  |  |  |  |
| Теория пределов.                         | OK 01OK 09              | текущии       | Проверка и оценивание решения задач |  |  |  |  |
| Непрерывность.                           |                         |               | решения зада т                      |  |  |  |  |
| Тема 3. 2.                               | OK 01OK 09              | Текущий       | Проверка и оценивание               |  |  |  |  |
| Дифференциальное исчисление              | OR 01OR 07              | текущии       | решения задач                       |  |  |  |  |
| функции одной действительной             |                         |               | F                                   |  |  |  |  |
| переменной                               |                         |               |                                     |  |  |  |  |
| Тема 3. 3.                               | ОК 01ОК 09              | Текущий       | Проверка и оценивание               |  |  |  |  |
| Интегральное исчисление                  |                         | ,             | решения задач                       |  |  |  |  |
| функции одной действительной             |                         |               |                                     |  |  |  |  |
| переменной                               |                         |               |                                     |  |  |  |  |
| Тема 3.4.                                | ОК 01ОК 09              | Текущий       | Проверка и оценивание               |  |  |  |  |
| Дифференциальное исчисление              |                         |               | решения задач                       |  |  |  |  |
| функции нескольких                       |                         |               |                                     |  |  |  |  |
| действительных переменных.               |                         |               |                                     |  |  |  |  |
| Тема 3.5.                                | ОК 01ОК 09              | Текущий       | Проверка и оценивание               |  |  |  |  |
| Интегральное исчисление                  |                         |               | решения задач                       |  |  |  |  |
| функции нескольких                       |                         |               |                                     |  |  |  |  |
| действительных переменных                | 271.04                  |               |                                     |  |  |  |  |
| Тема 3.6.                                | ОК 01ОК 09              | Текущий       | Проверка и оценивание               |  |  |  |  |
| Теория рядов                             | OK 01 OK 00             | T. V          | решения задач                       |  |  |  |  |
| Тема 3.7.                                | OK 01OK 09              | Текущий       | Проверка и оценивание               |  |  |  |  |
| Обыкновенные                             |                         |               | решения задач                       |  |  |  |  |
| дифференциальные уравнения Тема 4.2.     | ОК 01ОК 09              | Текущий       | Проверка и оценивание               |  |  |  |  |
|                                          | OK 01OK 09              | 1 скущии      | проверка и оценивание решения задач |  |  |  |  |
| Тригонометрическая и показательная формы |                         |               | решения зада і                      |  |  |  |  |
| комплексного числа                       |                         |               |                                     |  |  |  |  |
| Тема 1.1. – 4.2.                         | OK 01OK 09              | Промежуточный | Дифференцированный                  |  |  |  |  |
|                                          |                         | , J           | зачёт                               |  |  |  |  |

## 2. Задания для контроля и оценки результатов

## 2.1. Задания для текущего контроля

## 2.2. Задания для промежуточного контроля

Тема 1.1. Матрицы и определители

Практическое занятие Решение задач: Операции над матрицами. Вычисление определителей. Нахождение обратной матрицы

Цель: приобретение практических навыков по операциям над матрицами Хол занятия:

- 1. Организационный момент
- 2. Устный фронтальный опрос

Пользуясь конспектом лекции и рекомендуемой литературой ответить на вопросы:

- Что называют матрицей?
- Какие матрицы называются прямоугольными? квадратными?
- Какие матрицы называются равными?
- Что называют главной диагональю матрицы?
- Какая квадратная матрица называется диагональной? нулевой? единичной? транспонированной? треугольной? ступенчатой?
- Какие преобразования матрицы называются элементарными? Как привести матрицу к ступенчатому виду? (пример)
- Что называют суммой матриц? В чем состоит обязательное условие существования суммы матриц?
- Какими свойствами обладает сумма матриц? (пример) Что называют произведением матрицы на число? (пример)
- Что называют произведением двух матриц? Как найти произведение двух матриц?
- В чем состоит обязательное условие существования произведения матриц? Какими свойствами обладает произведение матриц? (пример)
- Что называют определителем квадратной матрицы? определителем второго порядка? определителем третьего порядка?
- Какими свойствами обладает определитель?
- В чем состоит метод треугольников для вычисления определителя третьего порядка? (пример)
  - 3. Выполнение практических заданий:

1. Найти линейные комбинации матриц: a) A - C +B; б) 5A + 3B - 7C, если:

$$A = \begin{pmatrix} 3 & 7 & 4 \\ 1 & 5 & 2 \end{pmatrix}, B = \begin{pmatrix} 1 & 0 & 2 \\ 6 & 4 & 3 \end{pmatrix}, C = \begin{pmatrix} 4 & 2 & 1 \\ 7 & 3 & 5 \end{pmatrix}$$

Найти A · B, если:

a) 
$$A = \begin{pmatrix} 1 & -4 \\ 6 & 9 \end{pmatrix}$$
;  $B = \begin{pmatrix} \frac{1}{2} & \frac{3}{5} \end{pmatrix}$ ;

$$\mathbf{6}) A = \begin{pmatrix} 2 & -5 & 1 \\ 9 & 0 & -3 \\ 2 & 1 & 4 \end{pmatrix}; B = \begin{pmatrix} 3 \\ 1 \\ -2 \end{pmatrix}.$$

3. Выполните действия над матрицами:

$$\begin{pmatrix} 3 & 4 & 1 \\ 2 & 1 & 5 \\ 6 & 4 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 5 & 3 & 4 \\ 2 & -1 & 0 & 1 \\ 2 & 0 & 1 & 3 \end{pmatrix} + \begin{pmatrix} 1 & 3 \\ 5 & 0 \\ 1 & -4 \end{pmatrix} \cdot \begin{pmatrix} 1 & 2 & 4 & 1 \\ 0 & 1 & 3 & 1 \end{pmatrix}$$

## Тема 1.2. Системы линейных уравнений

Практическое занятие Решение систем линейных уравнений

Цель: приобретение практических навыков решению систем линейных уравнений Ход занятия:

- 1. Организационный момент
- 2. Решение задач на тему: «Системы линейных уравнений»
- 1. Дана система линейных уравнений. Решите ее 1) методом Крамера; 2) методом Гаусса.

| 1.1 $\begin{cases} 2x_1 + x_2 + 3x_3 = 7, \\ 2x_1 + 3x_2 + x_3 = 1, \\ 3x_1 + 2x_2 + x_3 = 6; \end{cases}$        | 1.2 $\begin{cases} 2x_1 - x_2 + 2x_3 = 3, \\ x_1 + x_2 + 2x_3 = -4, \\ 4x_1 + x_2 + 4x_3 = -3; \end{cases}$     |
|-------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|
| 1.3 $\begin{cases} 3x_1 - x_2 + x_3 = 12, \\ x_1 + 2x_2 + 4x_3 = 6, \\ 5x_1 + x_2 + 2x_3 = 3; \end{cases}$        | 1.4 $\begin{cases} 2x_1 - x_2 + 3x_3 = -4, \\ x_1 + 3x_2 - x_3 = 11, \\ x_1 - 2x_2 + 2x_3 = -7; \end{cases}$    |
| 1.5 $ \begin{cases} 3x_1 - 2x_2 + 4x_3 = 12, \\ 3x_1 + 4x_2 - 2x_3 = 6, \\ 2x_1 - x_2 - x_3 = -9; \end{cases} $   | 1.6 $\begin{cases} 8x_1 + 3x_2 - 6x_3 = -4, \\ x_1 + x_2 - 2x_3 = 2, \\ 4x_1 + x_2 - 3x_3 = -5; \end{cases}$    |
| 1.7 $\begin{cases} 4x_1 + x_2 - 3x_3 = 9, \\ x_1 + x_2 - x_3 = -2, \\ 8x_1 + 3x_2 - 6x_3 = 12; \end{cases}$       | 1.8 $\begin{cases} 2x_1 + 3x_2 + 4x_3 = 33, \\ 7x_1 - 5x_2 = 24, \\ 4x_1 + 11x_3 = 39; \end{cases}$             |
| 1.9 $ \begin{cases} 2x_1 + 3x_2 + 4x_3 = 12, \\ 7x_1 - 5x_2 + 3x_3 = -33, \\ 4x_1 + x_3 = -7; \end{cases} $       | 1.10 $\begin{cases} x_1 + 4x_2 - x_3 = 6, \\ 5x_2 + 4x_3 = -20, \\ 3x_1 - 2x_2 + 5x_3 = -22; \end{cases}$       |
| 1.11<br>$\begin{cases} 3x_1 - 2x_2 + 4x_3 = 21, \\ 3x_1 + 4x_2 - 2x_3 = 9, \\ 2x_1 - x_2 - x_3 = 10; \end{cases}$ | 1.12 $\begin{cases} 3x_1 - 2x_2 - 5x_3 = 5, \\ 2x_1 + 3x_2 - 4x_3 = 12, \\ x_1 - 2x_2 + 3x_3 = -1; \end{cases}$ |
| 1.13 $ \begin{cases} 4x_1 + x_2 + 4x_3 = 19, \\ 2x_1 - x_2 + 2x_3 = 11, \\ x_1 + x_2 + 2x_3 = 8; \end{cases} $    | 1.14 $\begin{cases} 2x_1 - x_2 + 2x_3 = 0, \\ 4x_1 + x_2 + 4x_3 = 6, \\ x_1 + x_2 + 2x_3 = 4; \end{cases}$      |
| 1.15 $ \begin{cases} 2x_1 - x_2 + 2x_3 = 8, \\ x_1 + x_2 + 2x_3 = 11, \\ 4x_1 + x_2 + 4x_3 = 22; \end{cases} $    | 1.16 $\begin{cases} 2x_1 - x_2 - 3x_3 = -9, \\ x_1 + 5x_2 + x_3 = 20, \\ 3x_1 + 4x_2 + 2x_3 = 15; \end{cases}$  |
| 1.17 $ \begin{cases} 2x_1 - x_2 - 3x_3 = 0, \\ 3x_1 + 4x_2 + 2x_3 = 1, \\ x_1 + 5x_2 + x_3 = -3; \end{cases} $    | 1.18 $\begin{cases} -3x_1 + 5x_2 + 6x_3 = -8, \\ 3x_1 + x_2 + x_3 = -4, \\ x_1 - 4x_2 - 2x_3 = -9; \end{cases}$ |
| 1.19 $\begin{cases} 3x_1 + x_2 + x_3 = -4, \\ -3x_1 + 5x_2 + 6x_3 = 36, \\ x_1 - 4x_2 - 2x_3 = -19; \end{cases}$  | 1.20 $\begin{cases} 3x_1 - x_2 + x_3 = -11, \\ 5x_1 + x_2 + 2x_3 = 8, \\ x_1 + 2x_2 + 4x_3 = 16; \end{cases}$   |
| 1.21                                                                                                              | 1.22 $\begin{cases} 2x_1 + 3x_2 + x_3 = 4, \\ 2x_1 + x_2 + 3x_3 = 0, \\ 3x_1 + 2x_2 + x_3 = 1; \end{cases}$     |

**Тема 2.1.** Векторы. Операции над векторами. Практическое занятие Решение задач по теме: Действия над векторами в координатной форме

Цель: приобретение практических навыков по операциям над векторами Ход занятия:

1. Организационный момент

## 2. Решение задач

- 1. По координатам точек А, В, С для указанных векторов, найдите:
- а) координаты векторов  $\vec{a}$ ,  $\vec{b}$ ,  $\vec{c}$
- б) модуль вектора  $\vec{a}$ ,  $\vec{b}$
- в) скалярное произведение векторов  $\vec{a}$  и  $\vec{b}$
- г) угол между векторами  $\vec{a}$  и  $\vec{b}$
- д) векторное произведение векторов  $\vec{a}$  и  $\vec{b}$
- е) площадь параллелограмма, построенного на этих векторах
- ж) смешанное произведение векторов  $[\vec{a} \times \vec{b}] \cdot \vec{c}$ , где  $\vec{b} = \vec{c}$
- з) объем параллелепипеда, построенного на этих векторах.

| № варианта | A           | В           | С           | ā                                             | $\vec{b}$ |
|------------|-------------|-------------|-------------|-----------------------------------------------|-----------|
| 1          | (4; 6; 3)   | (-5; 2; 6)  | (4; -4; -3) | $4\overrightarrow{CB} - \overrightarrow{AC}$  | Ā₿        |
| 2          | (4; 3; -2)  | (-3; -1; 4) | (2; 2; 1)   | $-5\overrightarrow{AC} + \overrightarrow{CB}$ | ĀB        |
| 3          | (-2; -2; 4) | (1; 3; -2)  | (1; 4; 2)   | $2\overrightarrow{AC} - 3\overrightarrow{BA}$ | BC        |
| 4          | (2; 4; 3)   | (3; 1; -4)  | (-1; 2; 2)  | $2\overrightarrow{BA} - 7\overrightarrow{AC}$ | ĊB        |
| 5          | (2; 4; 5)   | (1; -2; 3)  | (-1; -2; 4) | $4\overrightarrow{AB} + 4\overrightarrow{AC}$ | BC        |
| 6          | (-1; -2; 4) | (-1; 3; 5)  | (1; 4; 2)   | $3\overrightarrow{AC} - 4\overrightarrow{BC}$ | ĀB        |

## Тема 2.2. Прямая на плоскости

Практическое занятие Составление уравнений прямых и их построение

Цель: приобретение практических навыков по составлению уравнений прямых и их построение

Ход занятия:

- 1. Организационный момент
- 2. Решение задач

#### Задание 1

Треугольник задан вершинами A(-3; -3), B(-4; 5), C(3; 1). Выполнить чертеж.

- 1) Составить уравнения сторон треугольника;
- 2) Составить уравнение медианы BD;
- 3) Найти угол наклона прямой АС к оси Ох.

#### Задание 2

Привести уравнение прямой к каноническому виду l: 2x + 3y - 18 = 0

#### Задание 3

Точка, двигаясь прямолинейно, прошла через положения A(-1; 6), B(3; -2). В каких точках она пересечет оси координат?

## Задание 4

Вычислить длину отрезка прямой l: 3x - 4y + 12 = 0, заключенного между осями координат.

#### Задание 5

На прямой l: 2x - 3y + 6 = 0 найдите точку M, равноудаленную от точек A(3; 0), B(5; 2).

#### Задание 6

Треугольник задан вершинами A(4; -2), B(-4; 2), C(2; 5). Выполнить чертеж.

- 1) Составить уравнения сторон треугольника;
- 2) Составить уравнение медианы СD;
- 3) Найти угол наклона прямой ВС к оси Ох.

#### Задание 7

Привести уравнение прямой к каноническому виду l: 3x + 7y - 42 = 0

#### Задание 8

Прямая, проходящая через точку (-2; -1), отсекает на оси Ох отрезок a = 4. Составьте уравнение этой прямой (в общем виде).

#### Задание 9

Вычислить длину отрезка прямой l: 3x + 4y + 24 = 0, заключенного между осями координат.

#### Задание 10

На прямой l: 2x + y - 2 = 0 найдите точку M, равноудаленную от точек A(0; 6), B(1; 5).

#### Задание 11

Треугольник задан вершинами A(0; -3), B(-4; 1), C(2; 3). Выполнить чертеж.

- 1) Составить уравнения сторон треугольника;
- 2) Составить уравнение медианы СD;
- 3) Найти угол наклона прямой АС к оси Ох.

#### Задание 12

Привести уравнение прямой к каноническому виду l: 5x - y + 20 = 0

## Задание 13

Точка, двигаясь прямолинейно, прошла через положения A(5; 2), B(-10; -1). В каких точках она пересечет оси координат?

## Задание 14

Вычислить длину отрезка прямой l: 4x + 3y + 12 = 0, заключенного между осями координат.

#### Задание 15

На прямой l: 2x - 3y - 3 = 0 найдите точку M, равноудаленную от точек A(1; 2), B(4; 3).

#### Задание 16

Треугольник задан вершинами A(3; 2), B(1; -1), C(-4; 1). Выполнить чертеж.

- 1) Составить уравнения сторон треугольника;
- 2) Составить уравнение медианы BD;
- 3) Найти угол наклона прямой АВ к оси Ох.

## Задание 17

Привести уравнение прямой к каноническому виду l: -4x + 3y - 24 = 0

#### Задание 18

Прямая, проходящая через точку (-3; 2), отсекает на оси Оу отрезок b = 3. Составьте уравнение этой прямой (в общем виде).

#### Задание 19

Вычислить длину отрезка прямой l: 4x - 3y - 24 = 0, заключенного между осями координат.

#### Задание 20

На прямой l: x - 2y - 2 = 0 найдите точку M, равноудаленную от точек A(3; 1), B(5; -1).

#### Задание 21

Треугольник задан вершинами A(-2; -1), B(-1; 4), C(3; -4). Выполнить чертеж.

- 1) Составить уравнения сторон треугольника;
- 2) Составить уравнение медианы АD;
- 3) Найти угол наклона прямой АВ к оси Ох.

#### Задание 22

Привести уравнение прямой к каноническому виду l: 7x - 2y + 28 = 0

#### Задание 23

Прямая, параллельная оси Ох, проходит через точку (1; 3). Составьте уравнение этой прямой.

#### Задание 24

Вычислить длину отрезка прямой l: 3x - 4y - 12 = 0, заключенного между осями координат.

#### Задание 25

На прямой l: 3x - y - 2 = 0 найдите точку M, равноудаленную от точек A(-1; 2), B(4; 1).

## Тема 2.3. Кривые второго порядка

Практическое занятие Составление уравнений: кривых второго порядка и их построение Цель: приобретение практических навыков по составлению уравнений: кривых второго порядка и их построение

Ход занятия:

- 1. Организационный момент
- 2. Решение задач

Пример 1 Составьте уравнение окружности с центром O(3; -2) и радиусом r = 5.

#### Решение:

Подставив a = 3, b = -2 и r = 5 в каноническое уравнение окружности  $(x-a)^2 \div (y-b)^2 = R^2$ ,

$$(x-3)^2 + (y+2)^2 = 25$$
.

Пример 23апишите уравнение окружности с центром в точке M(-3;1), которая проходит через точку K(-1;5)

$$\overline{OM}| = \sqrt{(x_2 - x_{1)^2} + (y_2 - y_{1)^2}} \rightarrow \sqrt{-1 - (-3)^2 + (5 - 1)^2} = \sqrt{20}$$

#### Решение:

Подставим значения в уравнение окружности  $(x-a)^2 + (y-b)^2 = R^2 \to R^2$ 

$$20 = (x - (-3)^2 + (y - 1)^2)$$
$$20 = (x + 3)^2 + (y - 1)^2$$

Самостоятельно:

1. Составьте уравнение окружности

A.O(-2;1) R=45. 
$$M(1; -4)$$
,  $R = 2$ ;  $B.M(0; -5)$ ,  $R = 3$ ;  $\Gamma$ . O(-3;2),  $R$ =4.

1. Составьте уравнение окружности с центром в точке M(1; -4), проходящей через точку A(0; 3).

2. Определите по уравнению окружности координаты ее центра и радиус:

A) 
$$(X+2)^2 + (Y-5)^2 = 49 \text{ F}) (X+7)^2 + (Y+1)^2 = 36$$
  
B)  $(X-6)^2 + (Y+15)^2 = 81 \text{ F}) X^2 + (Y-9)^2 = 2$ 

## Тема 3.1. Теория пределов. Непрерывность

**Цель занятия:** создать условия для применения знаний и умений в знакомой и новых учебных ситуациях

#### Ход занятия:

- 1 Рассмотрите теоретический материал по теме и примеры решения задач.
- 2 Выполните самостоятельно работу один вариант. Оформите подробное решение письменно в тетради с указанием ответов.
- 3 Ответьте письменно на контрольные вопросы.

# Краткие теоретические сведения по рассматриваемой проблеме, основные характеристики по содержанию практической работы:

**Определение.** Число A называется *пределом* функции y=f(x) при x, стремящемся  $\kappa$  (в точке), если для любого положительного числа  $\epsilon$  найдется такое положительное число  $\delta$ , что , как только .

## Обозначение:

**Определение.** Функция y=f(x) называется бесконечно малой при x, стремящемся  $\kappa$  (в точке), если

**Определение.** Функция y=f(x) называется *бесконечно большой* при x, стремящемся  $\kappa$  (в точке), если для любого положительного числа M найдется такое положительное число  $\delta$ , что , как только

#### Обозначение:

**Определение.** Функция y=f(x), заданная на всей числовой прямой, называется *бесконечно большой* при x, стремящемся  $\kappa$ , если для любого положительного числа M найдется такое положительное число T, что , как только .

#### Обозначение:

## Основные теоремы о пределах:

1;

2;

3;

4.

В простейших случаях вычисление предела функции сводится к подстановке в функцию, стоящую под знаком предела, предельного значения аргумента. Но довольно часто такая подстановка предельного значения аргумента приводит к неопределенным значениям вида: , , , (), (. Вычисление предела в этих случаях, называют раскрытием неопределенностей. Для раскрытия неопределенностей преобразуют выражение, стоящее под знаком предела, затем используют теоремы о пределах, замечательные пределы.

#### Пример 1. Вычислить

Решение. Подставляем в функцию предельное значение аргумента x=3, получим Ответ: 5.

## Пример 2. Вычислить

Решение. Подставляем в функцию предельное значение аргумента x=-1, получим. Необходимо разложить числитель и знаменатель на множители, используя формулы сокращенного умножения, правило разложения квадратного трехчлена на множители (-корни квадратного трехчлена), метод группировки. Решение записывают в виде:

Сокращение на (x+1) возможно, так как оно не равно нулю, а лишь стремится к нулю.

Ответ: 6.

## Пример 3. Вычислить

Решение. Подставляем в функцию предельное значение аргумента x=4, получим. Чтобы избавиться от неопределенности, надо функцию умножить на единицу, представив ее в виде дроби, сопряженной к выражению, содержащему корень: . Запишем решение

Ответ: -1/48.

### Пример 4. Вычислить

Решение. Подставляем в функцию предельное значение аргумента x, получим. Чтобы избавиться от неопределенности, надо в числителе и знаменателе вынести множитель, содержащий максимальную степень переменной. Запишем решение

Ответ: 0.

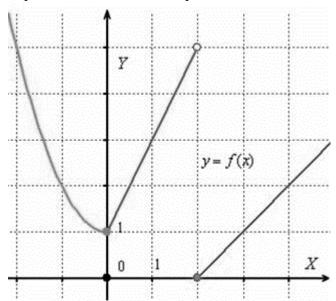
Ответ: .

## Пример 5. Вычислить

Решение. Подставляем в функцию предельное значение аргумента x, получим. Чтобы избавиться от неопределенности, надо в числителе и знаменателе вынести множитель, содержащий максимальную степень переменной. Запишем решение

**Определение.** Функция y=f(x) называется *непрерывной в точке*, если она определена в этой точке и существует конечный предел функции в этой точке, равный значению функции в этой точке: Точка, в которой функция не является непрерывной, называется *точкой разрыва*.

Если функция y=f(x) непрерывна в каждой точке интервала (a, b), то она непрерывна на этом интервале.


## Пример 6. Рассмотрим функцию

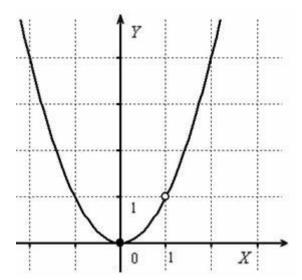
и выполним её чертёж.

Строим график:

- 1) на полуинтервале ( $-\infty$ ; 0] чертим фрагмент параболы,
- 2) на интервале (0; 2) отрезок прямой,
- 3) на полуинтервале  $[2; +\infty)$  прямую.

При этом в силу неравенства значение определено для квадратичной функции, и в силу неравенства, значение определено для линейной функции.




Ответ: функция непрерывна при , точка x=2 – точка разрыва 1 рода.

Пример 2.7. Исследовать функцию на непрерывность

Решение. Преобразуем функцию

Область определения функции:

Построим график функции после упрощения дроби при .



Ответ: функция непрерывна при , точка x=1 – точка разрыва 1 рода.

## Задания для практической работы в 25 вариантах

## Все варианты из 2 заданий

Задание 1. Построить график функции и найти точки разрыва функции

Задание 2. Найти указанные пределы.

## Контрольные вопросы:

- 1 Какие виды неопределенностей встречались при решении заданий?
- 2 Сколько может быть точек разрыва?
- 3 Какая функция называется бесконечно малой?
- 4 Что понимают под понятиями элементарная и неэлементарная функция?

Тема 3. 2. Дифференциальное исчисление функции одной действительной переменной.

**Цель занятия:** закрепление теоретических знаний, полученных по теме: «Дифференцирование элементарных и сложных функций»; формирование умения находить производные сложной функции

Ход занятия:

- 1. Организационный момент
- 2. Повторение теоретического материала и решение примеров задач

## Правила определения производной

1. Постоянный множитель можно выносить за знак производной:

Если y=Cu(x), где C=const, то =C(x).

Пример: 
$$y=3$$
;

$$=3=3=3x^{-0.5-1}=x^{-1.5}$$
.

2. Производная суммы конечного числа дифференцируемых функций равна соответствующей сумме производных этих функций.

$$y=(x)+(x)+(x)$$
;  $=(x)+(x)+(x)$ .

Пример: .

3) Производная от произведения двух дифференцируемых функций равна произведению производной первой функции на вторую функцию плюс произведение первой функции на производную от второй функции, т.е.

если = , 
$$T0 = +$$
.

Пример: .

4) Производная дроби (т.е. частного от деления двух функций) равна дроби, у которой знаменатель есть квадрат знаменателя данной дроби, а числитель есть разность между произведением знаменателя на производную числителя и произведением числителя на производную знаменателя т.е.

если,

Пример:

## Производная сложной функции

Пусть задана сложная функция, т.е. такая, что её можно представить в следующем виде:

(u - промежуточный аргумент).

**Теорема:** Если функция имеет в некоторой точке x производную, а функция имеет при соответствующем значении и производную, тогда сложная функция в указанной точке имеет производную, которая равна

где вместо и должно быть подставлено выражение

Пример:  $y=sin(x^2)$ .

Пусть y=sinu, u=x<sup>2</sup>.\_Находим;

B итоге  $2x=2x \cos x^2$ .

## Производные различных порядков

Дифференцируя производную, получаем вторую производную от функции f(x): Производная от второй производной называется производной третьего порядка.

1. Производная сложной функции 
$$(\sin 5x)' = \frac{5 \cdot \cos x}{+: 5 \cdot \cos 5x} = \frac{5 \cdot \cos 5x}{-: -\cos 5x}$$

3. Производная функции  $y = \sin(x^2 + 1)$  имеет вид...

4. Производная функции  $y = \sqrt[5]{\sin x}$  имеет вид...

$$\frac{5 \cdot \sin^{\frac{6}{5}} x}{6} \cdot \cos x \qquad + \frac{1}{5} \cdot \frac{\cos x}{\sqrt[5]{\sin^4 x}} \qquad \frac{1}{5} \cdot \frac{1}{\sqrt[5]{\sin^4 x}}$$

5. Производная функции  $y = \sqrt[7]{tg^3x}$  имеет вид...

6. Производная функции  $(\cos 7x)' =$ имеет вид...

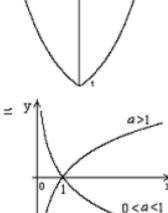
Производная функции 
$$(\cos 7x) = \text{имеет вид...}$$
 $\div 7 \cdot \sin x$ 
 $\div 7 \cdot \sin 7x$ 
 $\div -7 \cdot \sin 7x$ 
 $\div -\sin 7x$ 

7. Производная функции 
$$(\cos 9x)' =$$
 имеет вид...  
 $-: 9 \cdot \sin x$   $-: 9 \cdot \cos 9x \cdot \sin 9x$   $-: -9 \cdot \sin x$   $-: 9 \cdot \sin 9x$   
 $+: -9 \cdot \sin 9x$   $-: -\sin 9x$ 

8. Вычислить  $(ctgx)' = \dots$ 

$$\frac{1}{\sin^2 x} \qquad \frac{1}{\cos^2 x} \qquad \frac{1}{\cos^2 x} \qquad \frac{1}{\sin^2 x}$$

$$\frac{1}{\sin x} \qquad \frac{1}{\sin 2x}$$


9. Вычислить  $(tgx)^{/} = ...$ 

$$\frac{1}{\sin^2 x} + \frac{1}{\cos^2 x} - \frac{1}{\cos^2 x}$$

$$\frac{1}{\sin x} - \frac{1}{\cos^2 x}$$

$$\frac{1}{\cos 2x}$$

- 10. Графики каких функций изображены на рисунке?
- -: Степенных
- +: Показательных
- -: Логарифмических
- -: Тригонометрических
- -: Гиперболических



- 11. Графики каких функций изображены на рисунке?
- -: Степенных
- -: Показательных
- -: Логарифмических
- -: Тригонометрических
- -: Гиперболических
- **Тема 3. 3.** Интегральное исчисление функции одной действительной переменной **Цель работы**: приобретение практических навыков по нахождению методами интегрального исчисления площадей плоских фигур и объемов тел вращения **Ход урока:**
- 1. Организационный момент
- 2. Повторение теоретического материала и решение задач
- 1. Найти неопределенные интегралы, используя метод разложения

| TO THE STATE OF TH | parisi, nellolissyn metog pasilon                  | · · · · · · · · · · · · · · · · · · ·                      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|------------------------------------------------------------|
| 1. $\int (a_0x^2 + a_1x + a_2)dx$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <b>2.</b> $\int (a_0x^2 + a_1x + a_2)dx$           | 3. $\int ((1-z)/z)^2 dz$                                   |
| $\int ((1-z)/z)^2 dz$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\int \cos(2x) \cdot dx/(\sin^2 x \cdot \cos^2 x)$ | $\int dx/(\sin^2 x \cdot \cos^2 x)$                        |
| 4. $\int dx/(\sin^2 x \cdot \cos^2 x)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5. $\int (a_0x^2+a_1x+a_2)dx$<br>$\int dx/(x^2+3)$ | <b>6.</b> $\int ((1-z)/z)^2 dz$                            |
| $\int ((\sqrt{a} - \sqrt{x})^2 / \sqrt{ax}) dx$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Jun (A 13)                                         | $\int dx/\sqrt{8-x^2}$                                     |
| 7. $\int (a_0x^2 + a_1x + a_2)dx$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <b>8.</b> $\int (a_0x^2+a_1x+a_2)dx$               | <b>9.</b> $\int ((1-z)/z)^2 dz$                            |
| $\int dx/(x^2-6)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\int dx/\sqrt{8-x^2}$                             | $\int dx/(\sin^2 x \cdot \cos^2 x)$                        |
| <b>10.</b> $\int (a_0x^2 + a_1x + a_2)dx$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <b>11.</b> $\int (a_0x^2+a_1x+a_2)dx$              | <b>12.</b> $\int ((1-z)/z)^2 dz$                           |
| $\int x(x+a)(x+b)dx$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\int ((1-z)/z)^2 dz$                              | $\int dx/(x^2+3)$                                          |
| 13. $\int (a_0x^2+a_1x+a_2)dx$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <b>14.</b> $\int ((1-z)/z)^2 dz$                   | <b>15.</b> $\int ((1-z)/z)^2 dz$                           |
| ∫tg <sup>2</sup> xdx                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\int ((\sqrt{a} - \sqrt{x})^2 / \sqrt{ax}) dx$    | ∫2 <sup>x</sup> e <sup>x</sup> dx                          |
| <b>16.</b> $\int (a_0 x^2 + a_1 x + a_2) dx$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 17. $\int ((1-z)/z)^2 dz$                          | <b>18.</b> $\int ((1-z)/z)^2 dz$                           |
| $\int 2^{x}e^{x}dx$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\int dx/(x^2-6)$                                  | $\int \! \mathrm{d}x/\sqrt{4+x^2}$                         |
| <b>19.</b> $\int (a_0 x_2 + a_1 x + a_2) dx$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <b>20.</b> $\int ((1-z)/z)^2 dz$                   | <b>21.</b> $\int ((\sqrt{a} - \sqrt{x})^2 / \sqrt{ax}) dx$ |
| $\int dx/\sqrt{4+x^2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\int x(x+a)(x+b)dx$                               | $\int ((1-z)/z)^2 dz$                                      |
| <b>22.</b> $\int (a_0x^2 + a_1x + a_2)dx$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <b>23.</b> $\int ((1-z)/z)^2 dz$                   | 24. $\int dx / \sqrt{4 + x^2}$                             |
| $\int (\sqrt{x} + 1)(x - \sqrt{x} + 1) dx$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ∫tg <sup>2</sup> xdx                               | Joseph V                                                   |

|  | $\int (\sqrt{x+1})(x-\sqrt{x+1})dx$ |
|--|-------------------------------------|
|  |                                     |
|  |                                     |

2. Найти неопределенные интегралы, используя метод замены переменной (в скобках указана рекомендуемая подстановка)

| указана рекомендуемая подстановка)                                                                               |                                                                                                            |                                                                                                                             |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| 1 $\int x \sqrt{x-1} dx$ ; $[t=\sqrt{x-1}]$<br>$\int \frac{dx}{\sqrt{x}+\sqrt[4]{x}}$ ; $[t=\sqrt[4]{x}]$        | 2 $\int \frac{dx}{\sqrt{x^2 - a^2}}$ ; [x=1/t]<br>$\int x(\sqrt{x-5}) dx$ ; [t= $\sqrt{x-5}$ ]             | 3 $\int x \sqrt{x-7} dx$ ; [t=<br>$\sqrt{x-7}$ ]<br>$\int x \sqrt[3]{x+1} dx t= \sqrt[3]{x+1}$                              |  |  |  |  |
| $ \int \frac{dx}{\sqrt{x} - \sqrt[4]{x}};  [t = \sqrt[4]{x}] $ $ \int \frac{xdx}{\sqrt{x+1}}  [t = \sqrt{x+1}] $ | 5 $\int \frac{dx}{\sqrt{x+9}\cdot\sqrt[4]{x}};  [t=\sqrt[4]{x}]$ $\int \frac{dx}{\sqrt{x^2-a^2}}; [x=1/t]$ | 6 $\int x \sqrt[3]{x+1} dx t = \sqrt[3]{x+1}$ $\int \frac{dx}{\sqrt{x}+\sqrt[3]{x}};  [t=\sqrt[6]{x}]$                      |  |  |  |  |
| 7 $\int x \sqrt{x-1} dx$ ; $[t=\sqrt{x-1}]$<br>$\int \frac{xdx}{\sqrt{x+1}} [t=\sqrt{x+1}]$                      | 8 $\int \frac{dx}{\sqrt{x} + \sqrt[4]{x}} ; [t = \sqrt[4]{x}]$ $\int \frac{dx}{e^x + 1} ; [x = -lnt]$      | 9 $\int \frac{\cos x dx}{\sqrt{1 + \sin^2 x}};$ $[t = \sin x]$ $\int \frac{dx}{\sqrt{x} + \sqrt[4]{x}};  [t = \sqrt[4]{x}]$ |  |  |  |  |
| 10 $\int \frac{dx}{e^x + 1} ; [x=-lnt]$ $\int \frac{xdx}{\sqrt{x+1}} ; [t=\sqrt{x+1}]$                           | 11 $\int x \sqrt[3]{x+1} dx = \sqrt[3]{x+1}$ $\int \frac{xdx}{\sqrt{x+1}} \left[ t = \sqrt{x+1} \right]$   | 12 $\int \frac{\cos x dx}{\sqrt{1+\sin^2 x}};$ $[t=\sin x]$ $\int x \sqrt[3]{x+1} dx = \sqrt[3]{x+1}$                       |  |  |  |  |
| 13 $\int \frac{\cos x dx}{\sqrt{1+\sin^2 x}}$ ; [t=sinx] $\int \frac{dx}{e^x + 1}$ ; [x=-lnt]                    | 14 $\int \sqrt{4-x^2}  dx$ ; [x=2sint] $\int \frac{\cos x dx}{\sqrt{1+\sin^2 x}}$ ; [t=sinx]               | 15 $\int x^2 (3x^2-5)^6 dx$ ;<br>$[t=3x^2-5]$<br>$\int x^3 \sqrt{x+1} dx t=\sqrt[3]{x+1}$                                   |  |  |  |  |
| 16 $\int \frac{\cos x dx}{\sqrt{1+\sin^2 x}} ; [t=\sin x]$ $\int \frac{x dx}{\sqrt{x+1}} ; [t=\sqrt{x+1}]$       | 17 $\sqrt{4-x^2}$ dx; [x=2sint]<br>$\int_{x} \sqrt[3]{x+1}$ dx $t=\sqrt[3]{x+1}$                           | 18 $\int x \sqrt[3]{x+1}  dx = \frac{\sqrt[3]{x+1}}{\sqrt[3]{x+1}}$<br>$\int x \sqrt[3]{x+1}  dx = \sqrt[3]{x+1}$           |  |  |  |  |
| 19 $\int \frac{dx}{\sqrt{x^2 - a^2}} ; [x=1/t]$ $\int \frac{\cos x dx}{\sqrt{1 + \sin^2 x}} ; [t=\sin x]$        | 20 $\int x \sqrt[3]{x+1} dx = \sqrt[3]{x+1}$<br>$\int \frac{dx}{e^x + 1}$ ; [x=-lnt]                       | 21 $\int x \sqrt[3]{x+1} dx t = \sqrt[3]{x+1}$<br>$\int \frac{dx}{\sqrt{x^2 - a^2}} ; [x=1/t]$                              |  |  |  |  |
| 22 $\int \sqrt{4-x^2}  dx$ ; [x=2sint] $\int \frac{dx}{\sqrt{x^2-a^2}}$ ; [x=1/t]                                | 23 $\int \frac{dx}{e^x + 1}; [x=-lnt]$ $\int_{X} \sqrt{x - 1} dx; [t=\sqrt{x - 1}]$                        | 24 $\int \frac{dx}{x\sqrt{x^2 - a^2}} [x=1/t]$ $\int \frac{dx}{e^x + 1} ; [x=-lnt]$                                         |  |  |  |  |

3. Найти неопределенные интегралы, используя метод интегрирования по частям.

| $1 \int \ln x dx$             | $2 \int x^2 e^x dx$         | $3 \int x^2 e^x dx$          |
|-------------------------------|-----------------------------|------------------------------|
| $\int x \sin x dx$            | $\int arctgxdx$             | $\int x \sin x dx$           |
| $4 \int x \sin x dx$          | 5 ∫arctgxdx                 | $6 \qquad \int x^2 \ln x dx$ |
| $\int x^2 \ln x dx$           | $\int x \sin x \cos x dx$   | $\int x^2 e^x dx$            |
| $7 \int x^2 \ln x dx$         | $8 \int x \sin x \cos x dx$ | $9  \int x \sin x \cos x dx$ |
| $\int \ln x dx$               | $\int xarctgxdx$            | $\int x \sin x dx$           |
| $10 \int x^2 \ln x dx$        | 11 ∫xarctgxdx               | <b>12</b> ∫xarctgxdx         |
| $\int e^x \sin x dx$          | $\int \sin(\ln x) dx$       | $\int x^2 \ln x dx$          |
| $13 \int x^2 \ln x dx$        | $14 \int x \sin x dx$       | $15 \int e^x \sin x dx$      |
| $\int \arcsin x dx$           | $\int \sin(\ln x) dx$       | $\int xarctgxdx$             |
| <b>16</b> $\int \arcsin x dx$ | 17 $\int \arcsin x dx$      | $18 \int (x/e^x) dx$         |
| $\int (x/e^x)dx$              | $\int e^x \sin x dx$        | ∫arctgxdx                    |
| $19 \int (x/e^x)dx$           | $20  \int e^x \sin x dx$    | $21 \int (x/e^x)dx$          |
| $\int x^2 \ln x dx$           | $\int (x/e^x)dx$            | $\int xarctgxdx$             |
| $22 \int (xdx/\sin^2 x)$      | $23 \int (x/e^x) dx$        | <b>24</b> ∫xarctgxdx         |
| $\int x^2 e^x dx$             | $\int (xdx/\sin^2 x)$       | $\int \arcsin x dx$          |

Решение задач на тему: «Определенный интеграл»

- 1. Нарисуйте прямоугольный треугольник с вершинами в точках О (0;0), А (a:0), В (0,  $\theta$ ). Используя определенный интеграл, выведите формулу площади прямоугольного треугольника.
- 2. Нарисуйте треугольник произвольной формы, расположив его вершины в точках  $A_1(a_1;0); A_2(a_2;0); B(0; в)$ . Используя определенный интеграл, выведите формулу площади треугольника произвольной формы.
- 3. Нарисуйте четверть круга радиуса R с центром в точке O(0;0). Используя определенный интеграл, выведите формулу площади круга (Уравнение окружности  $x^2 + y^2 = R^2$ ).

Решение задач на тему: «Примеры применения интеграла в физике и геометрии»

- 1.Используя определенный интеграл, вычислите площадь, ограниченную кривой y=lnx, осью ОХ и прямой x=e. Нарисуйте чертеж.
- 2. Вычислить площадь сегмента, отсекаемого прямой y=3 2x от параболы  $y=x^2$ . Нарисуйте чертеж.
- 3.Вычислить площадь между кривой  $y = 1/x^2$  и осью OX, располагающуюся вправо от линии x=1. Нарисуйте чертеж.

**Тема 3.4**. Дифференциальное исчисление функции нескольких действительных переменных.

Практическое занятие Решение задач по теме: Вычисление частных производных и

дифференциалов функций нескольких производных. Исследование на экстремум функции нескольких переменных

Цель: приобретение практических навыков по вычислению частных производных и дифференциалов функций нескольких производных

Ход занятия:

- 1. Организационный момент
- 2. Решение задач

Задание1. Найдите производные пяти функций.

| Важилист. 116                   | Номер задачи                                                                          |                                   |                                              |                                 |                          |  |  |  |
|---------------------------------|---------------------------------------------------------------------------------------|-----------------------------------|----------------------------------------------|---------------------------------|--------------------------|--|--|--|
| Вариант                         | 1                                                                                     | 2                                 | 3                                            | 4                               | 5                        |  |  |  |
| 1,9,17 $\int_{X} \sqrt[3]{x^2}$ |                                                                                       | $\frac{5}{\sqrt[6]{x^3}}$         | arcsin(lnx)                                  | e <sup>x</sup> sinx             | $tg^2 x^2$               |  |  |  |
| 2,10,18                         | $7x^2 \sqrt[3]{x}$                                                                    | $\frac{4}{\sqrt[9]{x^5}}$         | $\cos^2 x + \\ + \ln \operatorname{tg}(x/2)$ | e <sup>x</sup> arcsinx          | xctg(e <sup>x</sup> )    |  |  |  |
| 3,11,19                         | $9x^4 \sqrt[4]{x^3} \qquad \frac{7}{\sqrt[7]{x^5}} \qquad \frac{\ln(\cos x)}{\cos x}$ |                                   | e <sup>x</sup> arccosx                       | sin <sup>2</sup> x <sup>2</sup> |                          |  |  |  |
| 4,12,20                         | $5x^2 \sqrt[7]{x^6}$                                                                  | $\frac{1}{5 \cdot \sqrt[9]{x^5}}$ | lg(arcsin2x)                                 | e <sup>x</sup> cosx             | tg <sup>3</sup> (ctgx-2) |  |  |  |
| 5,13,21                         | $x^2 \sqrt[4]{x^3}$                                                                   | $\frac{3}{\sqrt[4]{x^3}}$         | arctg(lnx)+<br>+ln(arctgx)                   | e <sup>x</sup> cosx             | e <sup>sin2x</sup>       |  |  |  |
| 6,14,22                         | <b>6,14,22</b> $3x^2 \sqrt{x}$                                                        |                                   | ln(tg(x/2)) -                                | e <sup>x</sup> arctgx           | x arcsin <sup>5</sup> x  |  |  |  |
| 7,15,23                         | $6x \sqrt[5]{x^3}$                                                                    | $\frac{4}{\sqrt[5]{x^2}}$         | $\arctan(x) + \ln(x^2 + 5)$                  | lg(x)*arccosx                   | $\cos^7 2x$              |  |  |  |
| 8,16,24                         | $2x^2 \sqrt[5]{x^2}$                                                                  | $\frac{5}{\sqrt[5]{x^3}}$         | ln <sup>2</sup> x-ln(lnx)                    | arccos(x)* e <sup>x</sup>       | $arctg^6(x^5-3)$         |  |  |  |

Задание 2. Проведите полное исследование функции и постройте ее график.

| 1           | 2          | 3           | 4           | 5           | 6           | 7           | 8           |
|-------------|------------|-------------|-------------|-------------|-------------|-------------|-------------|
| X           | 2x         | X           | 2x          | X           | X           | 2x          | 3x          |
| (x+2)(x-3)  | (x+3)(x-2) | 2(x+1)(x-5) | (x-3) (x+4) | (x-2)(x+3)  | (x-2)(x-5)  | (x+1)(x+4)  | (x+2) (x+1) |
| 9           | 10         | 11          | 12          | 13          | 14          | 15          | 16          |
| 2x          | 3x         | 4x          | X           | X           | X           | X           | X           |
| (x-5) (x+1) | (x-1)(x+4) | (x+2)(x+5)  | (x+4)(x+1)  | 2(x-6)(x+1) | 5(x+1)(x+3) | (x-1) (x+1) | 3(x-4)(x+1) |
| 17          | 18         | 19          | 20          | 21          | 22          | 23          | 24          |
| 3x          | X          | 2x          | 3x          | 2x          | 2x          | X           | 3x          |
| (x-2)(x+3)  | (x-2)(x+3) | (x+4)(x-5)  | (x-5)(x+3)  | (x+2)(x-6)  | (x+5) (x+1) | (x-7)(x+1)  | (x-3)(x+4)  |

Задание 3. Решить дифференциальные уравнения с разделяющимися переменными.

| $1 	 x(y^2 - 4)dx + ydy = 0$ $tgx\sin^2 ydx = \cos^2 xctgydy$ | $ x(y^2 - 4)dx + ydy = 0 $ y'=tgx tgy            | $3  x(y^2 - 4)dx + ydy = 0$ $xy' - y = y^2$  |
|---------------------------------------------------------------|--------------------------------------------------|----------------------------------------------|
| 4 $tgx\sin^2 ydx = \cos^2 xctgydy$                            | 5 $tgx\sin^2 ydx = \cos^2 xctgydy$               | 6 $tgx\sin^2 ydx = \cos^2 xctgydy$           |
| $xy'-y=y^2$                                                   | y-xy'=a(1+x <sup>2</sup> y')                     | y'tgx=y                                      |
| $7  x(y^2 - 4)dx + ydy = 0$ $xy'-y=y^2$                       | 8 $tgx\sin^2 ydx = \cos^2 xctgydy$<br>y'=tgx tgy | 9 y-xy'=a(1+x <sup>2</sup> y')<br>y'=tgx tgy |
| <b>10</b> y-xy'=a(1+x <sup>2</sup> y')                        | 11 $tgx\sin^2 ydx = \cos^2 xctgydy$              | 12 $y'=tgx tgy$                              |
| y'=tgx tgy                                                    | y'tgx=y                                          | $tgx\sin^2 ydx = \cos^2 xctgydy$             |
| 13 y'=tgx tgy                                                 | <b>14</b> xy'-y=y <sup>2</sup>                   | 15 xy'-y=y <sup>2</sup>                      |
| y'tgx=y                                                       | y'=tgx tgy                                       | y'=tgx tgy                                   |
| 16 $x(y^2 - 4)dx + ydy = 0$<br>$xy'-y=y^2$                    | <b>17</b> xy'-y=y <sup>2</sup> y'tgx=y           | $18  x(y^2 - 4)dx + ydy = 0$<br>y'tgx=y      |
| 19 $x(y^2-4)dx + ydy = 0$                                     | 20 $xy'-y=y^2$                                   | 21 $x(y^2-4)dx + ydy = 0$                    |
| y-xy'=a(1+x <sup>2</sup> y')                                  | $y-xy'=a(1+x^2y')$                               | y-xy'=a(1+x <sup>2</sup> y')                 |
| $22  x(y^2 - 4)dx + ydy = 0$ $y' tgx = y$                     | 23 $x(y^2 - 4)dx + ydy = 0$<br>$xy'-y=y^2$       | <b>24</b> xy'-y=y <sup>2</sup> y'tgx=y       |

Тема 3.5. Интегральное исчисление функции нескольких действительных переменных. Практическое занятие Решение задач: Вычисления двойных интегралов.

Цель: приобретение практических навыков по вычислению двойных интегралов Ход занятия:

- 1. Организационный момент
- 2. Решение задач
- 1. Вычислить двойные интегралы, считая, что область D ограничена указанными линиями:

a) 
$$\iint_D x dx dy$$
;  $y = \frac{x+1}{3}$ ,  $y = \frac{17-x}{3}$ ,  $x = 1$ ,  $x = 3$ ;  
6)  $\iint_D x^3 dx dy$ ;  $y = x+2$ ,  $y = x^2$ ;

B) 
$$\iint_D (xy^2 + 1) dx dy$$
;  $2y^2 = x$ ,  $y = \frac{x}{2}$ ;

B) 
$$\iint_{D} (xy^{2} + 1) dxdy; \ 2y^{2} = x, \ y = \frac{x}{2};$$

$$\Gamma) \iint_{D} e^{x+y} dxdy; \ x + y = 6, \ x = 2, \ y = 1.$$

## Тема 3.6. Теория рядов

Практическое занятие Исследование: сходимости рядов. Разложение элементарных функций в ряд Тейлора.

Цель: приобретение практических навыков по исследованию сходимости рядов,

разложению элементарных функций в ряд Тейлора. Ход занятия:

- 1. Организационный момент
- 2. Решение задач
- 1. Исследовать на сходимость и абсолютную сходимость ряды

a) 
$$1 + \frac{1}{2\sqrt{2}} + \frac{1}{3\sqrt{3}} + \dots;$$
  
6)  $3 - \frac{5}{1 \cdot 2} + \frac{7}{1 \cdot 2 \cdot 3} - \frac{9}{1 \cdot 2 \cdot 3 \cdot 4} + \dots$ 

2. Вычислить сумму ряда

$$\frac{1}{1\cdot 2} + \frac{1}{2\cdot 3} + \frac{1}{3\cdot 4} + \dots$$

3. Найти область сходимости ряда

$$\sum_{n=1}^{\infty} \frac{(x-7)^n}{4^n}.$$

4. Разложить функцию в ряд Тейлора по степеням х:

$$f(x) = \frac{\arcsin x}{x} - 1$$
.

5. Используя соответствующий ряд, вычислить  $\sin 20^\circ$  с точностью до 0,001.

## Тема 3.7. Обыкновенные дифференциальные уравнения

Практическое занятие Решение дифференциальных уравнений первого порядка. Решение дифференциальных уравнений второго порядка

Цель: приобретение практических навыков по решению дифференциальных уравнений первого и второго порядка

Ход занятия:

- 1. Организационный момент
- 2. Решение задач
- 1. Найти общее решение дифференциального уравнения к разделяющимися переменными.

$$xy' - y = 0$$

2. Найти частное решение дифференциального уравнения с разделяющимися переменными.

$$tg \; x * y' = 1 + y$$
, если  $x = \frac{\Pi}{6}; y = -\frac{1}{2}$ 

3. Найти решение однородного дифференциального уравнения первого порядка.

$$yy' = 2y - x$$

4. Найти общее решение дифференциального уравнения 2-го порядка.

$$y'' - 4y' + 13y = 0$$

5. Найти частное решение дифференциального уравнения 2-го порядка.

$$y'' + y' - 2y = 0$$
  
если  $x = 0; y = 1; y' = 3$ 

**Тема 4.2.** Тригонометрическая и показательная формы комплексного числа Практическое занятие Действия над комплексными числами в тригонометрической и показательной форме

Цель: приобретение практических навыков над действиями с комплексными числами в тригонометрической и показательной форме Ход занятия:

- 1. Организационный момент
- 2. Решение задач

## Вариант 1.

- 1. Изобразите геометрически на плоскости следующие комплексные числа:
- (a) z = 2-4i; (b) z = 4; (b) z = -3i.
- 2. Выполните действия  $z_1+z_2$ ,  $z_1-z_2$ ,  $z_1z_2$ ,  $z_1:z_2$  над комплексными числами  $z_1=3+7i$  и  $z_2=1-2i$ .
- 3. Найдите модуль и аргумент комплексного числа z = -1 + 2i.
- 4. Запишите число z = 4+4i в тригонометрической и показательной формах.

## Вариант 3.

- 1. Изобразите геометрически на плоскости следующие комплексные числа:
- a) z = -2-5i; 6) z = -5; B) z = -4i.
- 2. Выполните действия  $z_1+z_2$ ,  $z_1-z_2$ ,  $z_1z_2$ ,  $z_1:z_2$  над комплексными числами  $z_1=-6-4i$  и  $z_2=1+2i$ .
- 3. Найдите модуль и аргумент комплексного числа z = -2 + 2i.
- 4. Запишите число z = 3-3i в тригонометрической и показательной формах.

## Вариант 5.

- 1. Изобразите геометрически на плоскости следующие комплексные числа:
- a) z = 8-5i; 6) z = -3; B) z = 6i.
- 2. Выполните действия  $z_1+z_2$ ,  $z_1-z_2$ ,  $z_1z_2$ ,  $z_1:z_2$  над комплексными числами  $z_1=6+5i$  и  $z_2=1-3i$ .
- 3. Найдите модуль и аргумент комплексного числа z = -7-7i.
- 4. Запишите число  $z = \sqrt{2} \sqrt{2} i B$  тригонометрической и показательной формах.

#### Вариант 2.

- 1. Изобразите геометрически на плоскости следующие комплексные числа:
- a) z = 6-i; 6) z = 4i; B) z = -6.
- 2. Выполните действия  $z_1+z_2$ ,  $z_1-z_2$ ,  $z_1z_2$ ,  $z_1:z_2$  над комплексными числами  $z_1=3+2i$  и  $z_2=1-2i$ .
- 3. Найдите модуль и аргумент комплексного числа z = 5-2i.
- 4. Запишите число z = 2-3i в тригонометрической и показательной формах.

## Вариант 4.

- 1. Изобразите геометрически на плоскости следующие комплексные числа:
- a) z = 6-5i; 6) z = 4; B) z = 2i.
- 2. Выполните действия  $z_1+z_2$ ,  $z_1-z_2$ ,  $z_1z_2$ ,  $z_1:z_2$  над комплексными числами  $z_1=6+5i$  и  $z_2=1-3i$ .
- 3. Найдите модуль и аргумент комплексного числа z = -7-7i.
- 4. Запишите число  $z = 1 \sqrt{3} i$  в тригонометрической и показательной формах.

## Вариант 6.

- 1. Изобразите геометрически на плоскости следующие комплексные числа:
- a) z = 5+4i; 6) z = -6; B) z = 5i.
- 2. Выполните действия  $z_1+z_2$ ,  $z_1-z_2$ ,  $z_1z_2$ ,  $z_1:z_2$  над комплексными числами  $z_1=-9+5i$  и  $z_2=-1-4i$ .
- 3. Найдите модуль и аргумент комплексного числа z = 7-7i .
- 4. Запишите число  $z = 3 \sqrt{3} i B$  тригонометрической и показательной формах.

#### Вариант 7.

- 1. Изобразите геометрически на плоскости следующие комплексные числа:
- a) z = -6 + 2i; б) z = 7; в) z = -i.
- 2. Выполните действия  $z_1+z_2$ ,  $z_1-z_2$ ,  $z_1z_2$ ,  $z_1:z_2$  над комплексными числами  $z_1=-8+5i$  и  $z_2=9-3i$ .
- 3. Найдите модуль и аргумент комплексного числа z = -6 + 6i.
- 4. Запишите число  $z = \sqrt{3}$  -*i* в тригонометрической и показательной формах.

#### Вариант 8.

- 1. Изобразите геометрически на плоскости следующие комплексные числа:
- a) z = -4+7i; 6) z = -2; B) z = 3i.
- 2. Выполните действия  $z_1+z_2$ ,  $z_1-z_2$ ,  $z_1z_2$ ,  $z_1:z_2$  над комплексными числами  $z_1=11-9i$  и  $z_2=9-11i$ .
- 3. Найдите модуль и аргумент комплексного числа  $z = \sqrt{3}$  -*i*.
- 4. Запишите число z = -6 + 6i в тригонометрической и показательной формах.

## Вариант 9.

- 1. Изобразите геометрически на плоскости следующие комплексные числа:
- a) z = 7-2i; 6) z = -5; B) z = 3i.
- 2. Выполните действия  $z_1+z_2$ ,  $z_1-z_2$ ,  $z_1z_2$ ,  $z_1:z_2$  над комплексными числами  $z_1=7-4i$  и  $z_2=7+4i$ .
- 3. Найдите модуль и аргумент комплексного числа  $z=\sqrt{2}$   $\sqrt{2}$  i
- 4. Запишите число z = 5 + 5i в тригонометрической и показательной формах.

## Вариант 10.

- 1. Изобразите геометрически на плоскости следующие комплексные числа:
- a) z = 6+i; 6) z = 1; B) z = -5i.
- 2. Выполните действия  $z_1+z_2$ ,  $z_1-z_2$ ,  $z_1z_2$ ,  $z_1:z_2$  над комплексными числами  $z_1=12+9i$  и  $z_2=3-61i$ .
- 3. Найдите модуль и аргумент комплексного числа  $z = \sqrt{3}$  -3*i*.
- 4. Запишите число z = -4 + 4i в тригонометрической и показательной формах.

## Контрольные вопросы:

- 1. Что такое главный аргумент комплексного числа?
- 2. Геометрическая интерпретация комплексного числа, множество комплексных чисел?
- 3. Какие правила действия над комплексными числами в алгебраической форме (сложение, вычитание, умножение, деление) вы знаете?
- 4. Как выглядит тригонометрическая форма комплексного числа?
- 5. Как выглядит показательная форма комплексного числа?

## 2.2.Задания для промежуточной аттестации

## Вопросы к дифференцированному зачету.

- 1. Матрицы. Виды матриц. Действия над матрицами, свойства действий.
- 2 Определители, миноры и алгебраические дополнения.
- 3 Свойства определителей. Теорема Лапласа.
- 4 Обратная матрица. Теорема о существовании и единственности обратной матрицы.
- 5 Ранг матрицы. Элементарные преобразования матрицы.
- 6 Системы т линейных алгебраических уравнений с п неизвестными. Теорема Кронекера
- Капелли. Матричная форма записи системы линейных уравнений.
- 7 Решение систем линейных уравнений: метод обратной матрицы, метод Крамера, метод Гаусса.
- 8 Вектор. Линейные операции с векторами, свойства векторных операций.
- 9 Координаты вектора. Действия над векторами, заданными в координатной форме. Длина вектора.
- 10 Скалярное произведение векторов и его свойства.
- 11 Общее уравнение прямой линии на плоскости.
- 12 Параметрические и каноническое уравнения прямой на плоскости.
- 13 Уравнение прямой, проходящей через две заданные точки.
- 14 Уравнение прямой линии в отрезках.
- 15 Уравнение прямой линии с угловым коэффициентом.
- 16 Угол между двумя прямыми. Критерии параллельности и перпендикулярности двух прямых.
- 17 Кривые второго порядка. Канонические уравнения окружности, эллипса.
- 18 Кривые второго порядка. Каноническое уравнение гиперболы.
- 19 Кривые второго порядка. Каноническое уравнение параболы.
- 20 Алгебраическая форма комплексного числа. Действия над комплексными числами в алгебраической форме. Геометрическая интерпретация комплексного числа.
- 21 Тригонометрическая форма комплексного числа. Действия над комплексными числами в тригонометрической форме.
- 22 Числовые последовательности, способы задания. Предел последовательности, единственности предела, ограниченность сходящейся последовательности.
- 23 Бесконечно малые и бесконечно большие последовательности, их свойства. Свойства сходящихся последовательностей.
- 24 Монотонные последовательности. Предел монотонной последовательности.

- 25 Действительная функция действительной переменной, способы задания. Предел функции. Теорема о единственности предела функции. Свойства пределов функции.
- 26 Бесконечно малые и бесконечно большие функции, их свойства.
- 27 Односторонние пределы.
- 28 Сравнение бесконечно малых функций. Эквивалентные бесконечно малые функции.
- 29 Замечательные пределы.
- 30 Непрерывные функции. Критерий непрерывности функции в точке. Теорема о непрерывности суммы, произведения, частного непрерывных функций. Теорема о сохранении знака непрерывной функции.
- 31 Свойства непрерывной функции на отрезке (Теоремы Больцано Коши. Теоремы Вейерштрасса).
- 32 Разрывы непрерывности функции. Классификация разрывов непрерывности функции.
- 33 Понятие производной. Геометрический и механический смысл производной.
- 34 Вычисление производной (основные правила, таблица производных, производная сложной и обратной функции, логарифмическое дифференцирование).
- 35 Производные высших порядков.
- 36 Дифференциал функции. Геометрический и механический смысл дифференциала. Вычисление дифференциала.
- 37 Основные теоремы дифференциального исчисления.
- 38 Правило Лопиталя.
- 39 Признаки постоянства и монотонности функции на промежутке.
- 40 Экстремумы функции. Наибольшее и наименьшее значения функции. Выпуклость функции. Точки перегиба. Асимптоты.
- 41 Первообразная и неопределенный интеграл. Свойства неопределенного интеграла.
- 42 Метод подстановки и метод интегрирования по частям в неопределенном интеграле.
- 43 Задача о площади криволинейной трапеции. Понятие определенного интеграла. Свойства определенного интеграла.
- 44 Формула Ньютона Лейбница. Замена переменной в определенном интеграле и интегрирование по частям в определенном интеграле.
- 45 Геометрические и физические приложения определенных интегралов.
- 46 Несобственный интеграл по бесконечному промежутку.
- 47 Несобственный интеграл от неограниченной функции.
- 48 Функции многих переменных. Предел функции. Непрерывность функции.
- 49 Частные производные функции многих переменных.
- 50 Дифференциал функции. Свойства дифференциала.
- 51 Частные производные и дифференциалы высших порядков.
- 52 Двойной интеграл и его свойства. Вычисление интеграла.
- 53 Замена переменной в двойном интеграле.
- 54 Геометрические и физические приложения двойных интегралов.
- 55 Дифференциальные уравнения первого порядка. Виды и методы решений.
- 56 Линейные дифференциальные уравнения второго порядка с постоянными коэффициентами.
- 57 Интегрируемые типы дифференциальных уравнений второго порядка.
- 58 Уравнения второго порядка, допускающие понижение порядка.
- 59 Числовые ряды и их свойства. Признаки сходимости рядов..

## 3. Критерии оценивания

## 3.1. Критерии оценивания выполнения заданий текущего контроля

## 1. Опрос

- Оценка "отлично", если обучающийся:

- полно раскрыл содержание материала в объеме, предусмотренном программой и учебником,
- изложил материал грамотным языком в определенной логической последовательности, точно используя математическую терминологию и символику;
- правильно выполнил рисунки, чертежи, графики, сопутствующие ответу;
- показал умение иллюстрировать теоретические положения конкретными примерами, применять их в новой ситуации при выполнении практического задания;
- отвечал самостоятельно без наводящих вопросов преподавателя. Возможны одна две неточности при освещении второстепенных вопросов или в выкладках, которые обучающийся легко исправил по замечанию преподавателя.
- Оценка "*хорошо*", если он удовлетворяет в основном требованиям на оценку «5», но при этом имеет один из недостатков:
- в изложении допущены небольшие пробелы, не исказившие математическое содержание ответа;
- допущены один два недочета при освещении основного содержания ответа, исправленные по замечанию преподавателя;
- допущены ошибка или более двух недочетов при освещении второстепенных вопросов или в выкладках, легко исправленные по замечанию преподавателя.
- Оценка "удовлетворительно" ставится в следующих случаях:
- неполно или непоследовательно раскрыто содержание материала, но показано общее понимание вопроса и продемонстрированы умения, достаточные для дальнейшего усвоения программного материала;
- имелись затруднения или допущены ошибки в определении понятий, использовании математической терминологии, чертежах, выкладках, исправленные после нескольких наводящих вопросов преподавателя;
- обучающийся не справился с применением теории в новой ситуации при выполнении практического задания, но выполнил задания обязательного уровня сложности по данной теме;
- Оценка "неудовлетворительно" ставится в следующих случаях:
- не раскрыто основное содержание учебного материала;
- обнаружено незнание или непонимание обучающимся большей или наиболее важной части учебного материала;
- допущены ошибки в определении понятий, при использовании математической терминологии, в рисунках, чертежах или графиках, в выкладках, которые не исправлены после нескольких наводящих вопросов преподавателя.

#### Решение задач

- Оценка "*отпично*" задание выполнено в полном объеме правильно выбран способ решения, само решение сопровождается необходимыми объяснениями, верно выполнены нужные вычисления и преобразования, получен верный ответ, последовательно и аккуратно записано решение.
- Оценка *"хорошо"* задание выполнено в полном объеме, но встречается нерациональное решение, описки, недостаточность или отсутствие пояснений, обоснований в решениях.
- Оценка "удовлетворительно" задание выполнено в полном объеме, но встречаются негрубые ошибки, такие как потеря корня или сохранение в ответе постороннего корня; отбрасывание без объяснений одного из них и равнозначные им;
- Оценка "неудовлетворительно" задание не выполнено или имеются грубые ошибки, которые обнаруживают незнание обучающимися формул, правил, основных свойств, теорем и неумение их применять; незнание приемов решения задач, рассматриваемых в учебниках, а также вычислительные ошибки, если они не являются опиской

## 3.2. Критерии оценивания промежуточной аттестации

## Дифференцированный зачет

### Оценка - Критерии

#### «отлично»

- 1. Глубокое и прочное усвоение программного материала.
- 2. Точность и обоснованность выводов.
- 3. Безошибочное выполнение практического задания.
- 4. Точные, полные и логичные ответы на дополнительные вопросы.

## «хорошо»

- 1. Хорошее знание программного материала.
- 2. Недостаточно полное изложение теоретического вопроса экзаменационного билета.
- 3. Наличие незначительных неточностей в употреблении терминов, классификаций.
- 4. Точность и обоснованность выводов.
- 5. Логичное изложение вопроса, соответствие изложения научному стилю.
- 6. Негрубая ошибка при выполнении практического задания.
- 7. Правильные ответы на дополнительные вопросы.

## «удовлетворительно»

- 1. Поверхностное усвоение программного материала.
- 2. Недостаточно полное изложение теоретического вопроса экзаменационного билета.
- 3. Затруднение в приведении примеров, подтверждающих теоретические положения.
- 4. Наличие неточностей в употреблении терминов, классификаций.
- 5. Неумение четко сформулировать выводы.
- 6. Отсутствие навыков научного стиля изложения.
- 7. Грубая ошибка в практическом задании.
- 8. Неточные ответы на дополнительные вопросы.

## «неудовлетворительно»

- 1. Незнание значительной части программного материала.
- 2. Неумение выделить главное, сделать выводы и обобщения.
- 3. Грубые ошибки при выполнении практического задания.
- 4. Неправильные ответы на дополнительные вопросы.